Davide Boscaini, Ph.D.

Mail: dboscaini@fbk.eu • Webpage: https://davideboscaini.github.io • GitHub: github.com/davideboscaini

About

I'm a tenure-track research scientist at the Technologies of Vision research unit of the Fondazione Bruno Kessler in Trento, Italy. I received a PhD in Computational Science from the Università della Svizzera italiana in Lugano, Switzerland, in 2017. During my PhD, under the supervision of prof. Michael Bronstein, my research focused on extending deep learning techniques to geometric domains such as 3D shapes and graphs, contributing to the birth of a new research direction called

Geometric Deep Learning. Prior to that, I obtained an M.S. in Mathematics from the University of Verona, Italy, in 2013, and a B.S. in Applied Mathematics from the same institution in 2010.

My research interests are in 3D perception and understanding, with a focus on object 6D pose estimation. According to Google Scholar, I have an h-index of 13, an i10-index of 14 and my papers have been cited more than 5000 times.

Education

Education	
Ph.D. in Computational Science Università della Svizzera italiana	Sep. 2013 – Sep. 2017 Lugano, Switzerland
Dissertation on "Geometric Deep Learning for Shape Analysis". Advisor: M.M J. Masci. Examiners: J. Schmidhuber, M. Ovsjanikov, P. Vandergheynst, K. Hor	. Bronstein. Co-advisor: rmann
M.S. in Mathematics University of Verona Dissertation on "Spectral Methods for Shape Analysis". Advisor: G. Orlandi. C	Oct. 2010 – Mar. 2013 Verona, Italy o-advisor: U. Castellani
B.S. in Applied Mathematics University of Verona Dissertation on "Existence and multiplicity of the solutions of the Plateau problem."	Sep. 2007 – Oct. 2010 Verona, Italy lem". Advisor: S. Baldo
Publications	
Wild Berry image dataset collected in Finnish forests and peatlands using drones L. Riz, S. Povoli, A. Caraffa, D. Boscaini, M.L. Mekhalfi, P. Chippendale, M. Turti Ballester, F.B. Noguera, A. Franchi, E. Castelli, G. Piccinini, L. Marchesotti, M.S. C	ECCV-W 2024 ainen, B. Partanen, L.S. ouceiro, F. Poiesi
FreeZe: Training-free zero-shot 6D pose estimation with geometric and vision foundation models A. Caraffa, D. Boscaini, A. Hamza, F. Poiesi An early version of this work won the "Best method on TUD-L dataset" award at the T	ECCV 2024 BOP Challenge 2023
Exploring fine-grained retail product discrimination with zero-shot object classification using Vision-Language Models A. Tur, A. Conti, C. Beyan, D. Boscaini, R. Larcher, S. Messelodi, F. Poiesi, E. Ricci	RTSI 2024
Open-vocabulary object 6D pose estimation J. Corsetti, D. Boscaini, C. Oh, A. Cavallaro, F. Poiesi <i>First open-vocaulary setting for object 6D pose estimation. Highlight poster (acceptar</i>	CVPR 2024
Tracciamento 3D della palla da punti di vista multipli nella pallavolo L. Riz, S. Povoli, D. Boscaini, S. Messelodi, F. Poiesi Selected for oral presentation	Ital-IA 2024
Detect, Augment, Compose, and Adapt: Four steps for unsupervised domain adaptation in object detection M.L. Mekhalfi, D. Boscaini, F. Poiesi	BMVC 2023
Revisiting Fully Convolutional Geometric Features for object 6D pose estimation J. Corsetti, D. Boscaini, F. Poiesi	ICCV-W 2023
PatchMixer: Rethinking network design to boost generalization for 3D point cloud understanding D. Boscaini, F. Poiesi Novel network design that is intrinsically effective in generalisation across datasets un	IMAVIS, 2023

Supervised tractogram filtering using geometric deep learning P. Astolfi, R. Verhagen, L. Petit, E. Olivetti, S. Sarubbo, J. Masci, D. Boscaini, P. Avesani	MIA, 2023
The MONET dataset: Multimodal drone thermal dataset recorded in rural scenarios L. Riz, A. Caraffa, M. Bortolon, M.L. Mekhalfi, D. Boscaini, A. Moura, J. Antunes, A. Leonidou, C. Constantinides, C. Keleshis, D. Abate, F. Poiesi	CVPR-W 2023 Dias, H. Silva, A.
Learning general and distinctive 3D local deep descriptors for point cloud registration F. Poiesi, D. Boscaini State-of-the-art performance for point cloud registration in the transfer learning setting acro and Kitti datasets	TPAMI, 2023 oss 3DMatch, ETH,
Localisation of defects in volumetric CT scans of valuable wood logs D. Boscaini, F. Poiesi, S. Messelodi, A. Younes, D. Grande Selected for oral presentation	ICPR-W 2020
Joint supervised and self-supervised learning for 3D real-world challenges A. Alliegro, D. Boscaini, T. Tommasi Selected for oral presentation (4.4% accaptance rate)	ICPR 2020
Distinctive 3D local deep descriptors F. Poiesi, D. Boscaini	ICPR 2020
Shape consistent 2D keypoint estimation under domain shift L.O. Vasconcelos, M. Mancini, D. Boscaini, S. Rota Bulò, B. Caputo, E. Ricci	ICPR 2020
Novel-view human action synthesis M. Lakhal, D. Boscaini, F. Poiesi, O. Lanz, A. Cavallaro	ACCV 2020
Clustered dynamic graph CNN for biometric 3D hand shape recognition J. Svoboda, P. Astolfi, D. Boscaini, J. Masci, M.M. Bronstein	IJCB 2020
Tractogram filtering of anatomically non-plausible fibers with geometric deep learning P. Astolfi, R. Verhagen, L. Petit, E. Olivetti, J. Masci, D. Boscaini, P. Avesani	MICCAI 2020
Self-supervision for 3D real-world challenges A. Alliegro, D. Boscaini, T. Tommasi	ECCV-W 2020
Deciphering interaction fingerprints from protein molecular surfaces Nature P. Gainza, F. Sverrisson, F. Monti, E. Rodolà, D. Boscaini, M.M. Bronstein, B.E. Correira Advertised on the cover of the Feb 2020 issue of the journal	re Methods, 2020
Learning interaction patterns from surface representations of protein structure P. Gainza, F. Sverrisson, F. Monti, E. Rodolà, D. Boscaini, M.M. Bronstein, B.E. Correira	NeurIPS-W 2019
Structured domain adaptation for 3D keypoint estimation L.O. Vasconcelos, M. Mancini, D. Boscaini, B. Caputo, E. Ricci Selected for oral presentation	3DV 2019
3D shape segmentation with geometric deep learning D. Boscaini, F. Poiesi Selected for spotlight presentation	ICIAP 2019
Geometric deep learning on graphs and manifolds using mixture model CNNs F. Monti [*] , D. Boscaini [*] , J. Masci, E. Rodolà, J. Svoboda, M.M. Bronstein Selected for oral presentation. First unified framework able to generalize CNN architecture domains such as shapes and graphs. Also available as technical report: arXiv:1611.08402. contribution)	CVPR 2017 s to non-Euclidean (* indicates equal
Geometric deep learning SIGGRAPH A J. Masci, E. Rodolà, D. Boscaini, M.M. Bronstein, H. Li	sia Courses 2016
Learning shape correspondence with anisotropic convolutional neural network. D. Boscaini, J. Masci, E. Rodolà, M.M. Bronstein Presented also as a poster at the 3D Deep Learning Workshop (3DLL) 2016. Also available arXiv:1605.06437	s NeurIPS 2016 as technical report:

Anisotropic diffusion descriptors D. Boscaini, J. Masci, E. Rodolà, M.M. Bronstein, D. Cremers Oral presentation at EUROGRAPHICS 2016	CGF, 2016
Geodesic convolutional neural networks on Riemannian manifolds J. Masci*, D. Boscaini*, M.M. Bronstein, P. Vandergheynst Oral presentation at 3DRR 2015. It represents the first intrinsic extension of non-Euclidean domains. An early version of this work was published as the tec on January 2015. (* indicates equal contribution)	ICCV-W 2015 <i>f the popular CNN paradigm to</i> <i>hnical report: arXiv:1501.06297</i>
Learning class-specific descriptors for deformable shapes using localized spectral convolutional networks D. Boscaini, J. Masci, S. Melzi, M.M. Bronstein, U. Castellani, P. Vanderghey Oral presentation at SGP 2015	CGF, 2015 vnst
Shape-from-operator: Recovering shapes from intrinsic operators D. Boscaini, D. Eynard, D. Kourounis, M.M. Bronstein Oral presentation at EUROGRAPHICS 2015. First approach able to synthesize from intrinsic information. An early version of this work was published as the tw on June 2014	CGF, 2015 the extrinsic geometry of a shape echnical report: arXiv:1406.1925
Coulomb shapes: Using electrostatic forces for deformation-invarian shape representation D. Boscaini, R. Girdziusas, M.M. Bronstein Oral presentation at 3DOR 2014. Presented also as a poster at the Internati School (ICVSS), 2014	t EUROGRAPHICS-W 2014 ional Computer Vision Summer
A sparse coding approach for local-to-global 3D shape description D. Boscaini, U. Castellani Invited paper. Journal extension of the 3DOR 2013 conference paper	The Visual Computer, 2014
Local signatures quantization by sparse coding D. Boscaini, U. Castellani Oral presentation at 3DOR 2013. Presented also as a poster at SGP 2013	EUROGRAPHICS-W 2013
Patents	
US patent application No. 17675011 Clustered dynamic graph convolutional neural network for biometric 3D h Inventors: J. Svoboda, P. Astolfi, D. Boscaini, J. Masci	and recognition
US patent No. 10210430 System and a method for learning features on geometric domains (CIP) Inventors: M.M. Bronstein, D. Boscaini, F. Monti • Acquired by Twitter Inc	Filed Feb. 19, 2019
US patent No. 10013653 System and a method for learning features on geometric domains <i>Inventors: M.M. Bronstein, D. Boscaini, J. Masci, P. Vandergheynst</i> • Acquir	Filed Jul. 3, 2018 ired by Twitter Inc.
Invited talks	
Object 6D pose estimation in the foundation models era Politecnico di Torino, Torino, Italy • Invited by Francesca Pistilli	Jun. 6, 2024
3D object understanding on the shoulders of 2D foundation models École Polytechnique, Paris, France • Invited by Maks Ovsjanikov	Mar. 28, 2024
3D deep learning to the test of real-world challenges Ph.D. Event: Visions of Tomorrow; University of Pisa, Pisa, Italy	Dec. 11, 2020
3D Deep Learning Politecnico di Torino, Torino, Italy • Invited by Tatiana Tommasi	Dec. 11, 2019
Geometric deep learning for 3D shape analysis Politecnico di Torino, Torino, Italy • Invited by Barbara Caputo	May 13, 2019
Geometric deep learning for shape analysis EUSIPCO 2017, Kos, Greece	Sep. 2, 2017
Geometric deep learning for shape analysis	Apr. 4, 2017

TeV group (FBK), Trento, Italy • Invited by Samuel Rota Bulò and Stefano Messelodi	
Geometric deep learning for shape analysis IMATI group (CNR), Genoa, Italy • Invited by Michela Spagnuolo	Feb. 13, 2017
Deep learning on geometric data SSSTC RiC big data research workshop, Zurich, Switzerland	Feb. 16, 2016
Deep learning on geometric data Embedded Vision Systems (eVS), Verona, Italy • Invited by Roberto Marzotto	Feb. 8, 2016
Deep learning on geometric data Rainbow group, University of Cambridge, UK • Invited by Flora Tasse	Feb. 4, 2016
Deep learning on geometric data C.A.K.E. seminar, University of Cambridge, UK • Invited by Simone Parisotto	Feb. 3, 2016
Convolutional neural networks on non-Euclidean domains SciCADE 2015, Potsdam, Germany	Sep. 14, 2015
Shape-from-operators: recovering shapes from intrinsic differential operators TUM, Munich, Germany • Invited by Emanuele Rodolà	Nov. 26, 2014
Shape-from-operators: recovering shapes from intrinsic differential operators ICS retreat, Disentis, Switzerland	Aug. 19, 2014

Teaching experience

Academic courses

Trends and Applications in Computer Vision

University of Trento, Fall 2023

Short courses and tutorials

Functional Maps: A Flexible Representation for Learning and Co	omputing Correspondences	3DV 201	.8
Geometric Deep Learning	SIGGRAPH	Asia 201	.6
Deep Learning for Shape Analysis	EUROGRAPH	ICS 201	.6

Teaching Assistantships

Computer Vision and Pattern Recognition	Università della Svizzera italiana, Spring 2017
Computer Vision and Pattern Recognition	Università della Svizzera italiana, Spring 2016
Large Scale Optimization	Università della Svizzera italiana, Spring 2016
Computer Graphics	Università della Svizzera italiana, Fall 2014
Geometric Image Processing and Computer Vision	Università della Svizzera italiana, Spring 2014
Calculus	Università della Svizzera italiana, Fall 2013
Mathematical Analysis 1, Mathematical Analysis 2	University of Verona, 2012–2013
Mathematical Analysis 1, Mathematical Analysis 2	University of Verona, 2011–2012
Mathematical Analysis 1	University of Verona, 2010–2011
Student supervision	
Jaime Corsetti, PhD student at FBK, UNiTN	Nov. 2023–present
Role: PhD coadvisor	
Matteo Minardi, Master student at UNiTN	Mar. 2024–present
Role: Internship advisor, Master thesis advisor	
Mattia Nardon, Master student at UNiTN	Mar. 2024–present
Role: Internship advisor, Master thesis advisor	
Alice Fasoli, Master student at UNiTN	Mar. 2024–present
Role: Internship advisor, Master thesis advisor	
Jaime Corsetti, Master student at University of Trento	2022–Oct. 2023
Projects: Open-vocabulary and Supervised object 6D	pose estimation for RGBD images
Safa Abbes, Master student at University of Trento	2022–2023
Role: Masther thesis coadvisor · Project: Self-supervis	sed domain adaptation for RGB images

Antonio Alliegro, PhD student at Politecnico di Torino	2020-2021
Project: Self-Supervised domain adaptation for 3D point clouds	
Pietro Astolfi, PhD student at FBK, UniTN, and IIT	2019–2021
Role: PhD coadvisor \cdot Project: Geometric Deep Learning for brain structure analysis	
Levi O. Vasconcelos, PhD student at UniTN and IIT	2019–2020
Project: Structured domain adaptation	
Antonio Alliegro, Master student at Politecnico di Torino	2019–2020
Role: Masther thesis coadvisor	
Piero Cavalcanti, Master student at Politecnico di Torino	2019–2020
Role: Masther thesis coadvisor	
Myriam Bronstein, Master student at Università della Svizzera italiana	2016
Project: Machine learning methods on manifolds and graphs	
Fatemeh Chegini, Master student at Università della Svizzera italiana	2014-2015
Project: Spectral methods for cross-modal retrieval	

Academic service

Conferences revision activity

International Conference on Robotics and Automation (ICRA)	2022, 2020
International Conference on Pattern Recognition (ICPR)	2022, 2020
Symmetry and Geometry in Neural Representations (NeurIPS Workshops)	2022
International Conference on Image Analysis and Processing (ICIAP)	2022
International Conference on Machine Learning, Optimization, and Data Science	(LOD) 2022
Symposium On Applied Computing (SAC)	2022
International Conference on 3D Vision (3DV)	2021, 2020, 2019, 2018
International Conference on Machine Learning, Optimization, and Data Science	(LOD) 2021
International Conference on Machine Vision Applications (MVA)	2021, 2019
EUROGRAPHICS	2019, 2017, 2015
The British Machine Vision Conference (BMVC)	2018
Computer Vision and Pattern Recognition (CVPR)	2017
International Symposium on Vision, Modeling and Visualization (VMV)	2016
Neural Information Processing Systems (NeurIPS)	2016
Journal revision activity	
Robotics and Automation Letters (RAL)	2022
Computer Graphics Forum (CGF)	2022
IEEE Transactions on Image Processing (TIP)	2022, 2021
IEEE Transactions on Transactions on Knowledge and Data Engineering (TKDE)	2022, 2021
Neural Processing Letters (NEPL)	2022
IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI)	2021, 2020
IEEE Transactions on Visualization and Computer Graphics (TVCG)	2020, 2018, 2017
Computers and Graphics	2019
Computer Vision and Image Understanding (CVIU)	2019, 2015
International Journal of Machine Learning and Cybernetics (JMCL)	2019
Pattern Recognition Letters	2019
The Visual Computer Journal (TVCJ)	2018, 2017, 2016
Computer Aided Geometric Design (CAGD)	2018
Computer-Aided Design (CAD)	2018
Sensors	2018
IPSJ Transactions on Computer Vision and Applications	2017

Area chair

British Machine Vision Conference (BMVC)

Program committee

Graph Models for Learning and Recognition (GMLR)	2022
Organized within the 37th ACM Symposium on Applied Computing, Brno (Czech Republic)	